Finite-time blow-up in the Cauchy problem of a Keller-Segel system with logistic source

نویسندگان

چکیده

The Cauchy problems of Keller-Segel system with logistic source seem much less throughly understood than associated initial-boundary in bounded domains. This paper is concerned the problem generalized given by$ \begin{eqnarray*} \left\{ \begin{array}{llc} \label{188} u_t = \Delta u - \nabla \cdot (u\nabla v)+\lambda u-\mu u^{k}, \\ 0 v+u, \end{array} \right. \end{eqnarray*} $in \begin{document}$ \mathbb{R}^{n} $\end{document} for n\ge 3 $\end{document}, where \lambda\in \mathbb{R} \mu >0 k>1 $\end{document}.Under assumption k<\frac{3}{2}-\frac{1}{n} it shown that there exists m_{*}>0 such if radially symmetric initial data satisfies \int_ {B_{\frac{1}{2}}(0)}u_{0}\geq m_{*} then admits a finite-time blowup solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness vs. blow-up in the Keller-Segel system

The fully parabolic Keller-Segel chemotaxis system { ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0, vt = ∆v − v + u, x ∈ Ω, t > 0, is considered under homogeneous Neumann boundary conditions in bounded domains Ω ⊂ R, n ≥ 1. We demonstrate rigorous analytical techniques which can be used to identify situations when solutions either remain bounded, or exhibit a blow-up phenomenon. In the latter case, which is ...

متن کامل

Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion

The L-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemotactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for the proof of global exi...

متن کامل

Blow up of solutions to generalized Keller–Segel model

The existence and nonexistence of global in time solutions is studied for a class of equations generalizing the chemotaxis model of Keller and Segel. These equations involve Lévy diffusion operators and general potential type nonlinear terms.

متن کامل

Exact Criterion for Global Existence and Blow Up to a Degenerate Keller-Segel System

A degenerate Keller-Segel system with diffusion exponent m with 2n n+2 < m < 2 − 2 n in multi dimension is studied. An exact criterion for global existence and blow up of solution is obtained. The estimates on L 2n n+2 norm of the solution play important roles in our analysis. These estimates are closely related to the optimal constant in the HardyLittlewoodSobolev inequality. In the case of in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B

سال: 2023

ISSN: ['1531-3492', '1553-524X']

DOI: https://doi.org/10.3934/dcdsb.2023075